Chapter Review 6

第六章复习

练习说明 / Exercise Instructions

本章节复习包含16道综合练习题,涵盖第六章"离散随机变量"的所有核心概念。建议先尝试自行解答,然后点击"显示答案"按钮查看参考答案。每个练习题都有详细的解答步骤。

This chapter review contains 16 comprehensive exercises covering all the core concepts from Chapter 6 "Discrete Random Variables". It is recommended to try solving them yourself first, then click the "Show Answer" button to view the reference answers. Each exercise includes detailed solution steps.

复习要点 / Review Key Points:

  • 熟练掌握概率分布、期望值和方差的计算
  • 理解累积分布函数的构造和应用
  • 掌握随机变量函数变换的统计量计算
  • 熟悉离散均匀分布的标准公式

基础练习 / Basic Exercises

练习 1

随机变量 \(X\) 的概率函数为 \(P(X = x) = \frac{x}{15}\),其中 \(x = 1,2,3,4,5\)。

a) 构造概率分布表。
b) 求 \(P(3 < x \leq 5)\)。

解答:

a) 概率分布表:

x 1 2 3 4 5
P(X = x) 1/15 2/15 3/15 4/15 5/15

b) \(P(3 < x \leq 5) = P(x=4) + P(x=5) = 4/15 + 5/15 = 9/15 = 3/5\)

练习 2

离散随机变量 \(X\) 的概率分布如下表所示:

x -2 -1 0 1 2 3
P(X = x) 0.2 q 0.3 0.1 0.2 0.1

a) 求q的值。
b) 计算 \(P(-1 \leq x < 2)\)。

解答:

a) 概率和为1:0.2 + q + 0.3 + 0.1 + 0.2 + 0.1 = 1
0.9 + q = 1
q = 0.1

b) \(P(-1 \leq x < 2) = P(x=-1) + P(x=0) + P(x=1) = 0.1 + 0.3 + 0.1 = 0.5\)

练习 3

随机变量 \(X\) 的概率函数为 \(P(X = x) = \frac{(3x - 1)}{26}\),其中 \(x = 1,2,3,4\)。

a) 构造概率分布表。(2分)
b) 求 \(P(2 < X \leq 4)\)。(2分)

解答:

a) 概率分布表:

x 1 2 3 4
P(X = x) (3-1)/26 = 2/26 = 1/13 (6-1)/26 = 5/26 (9-1)/26 = 8/26 = 4/13 (12-1)/26 = 11/26

b) \(P(2 < X \leq 4) = P(x=3) + P(x=4) = 4/13 + 11/26 = 8/26 + 11/26 = 19/26\)

练习 4

16个计数器编号1到16,放在袋子里。随机选择一个计数器,记录数字 \(X\)。

a) 写出一个条件,如果 \(X\) 要被建模为离散均匀分布。(1分)
b) 求:
i) \(P(X = 5)\)(1分)
ii) \(P(X是质数)\)(2分)
iii) \(P(3 \leq X < 11)\)(2分)

解答:

a) 每个计数器被选中的概率相等。

b) i) \(P(X = 5) = 1/16\)

ii) 质数:2,3,5,7,11,13 → 6个
\(P(X是质数) = 6/16 = 3/8\)

iii) \(P(3 \leq X < 11) = P(x=3,4,5,6,7,8,9,10) = 8/16 = 1/2\)

练习 5

随机变量 \(Y\) 的概率函数为 \(P(Y = y) = \frac{y}{k}\),其中 \(y = 1,2,3,4,5\)。

a) 求k的值。(2分)
b) 构造概率分布表。(2分)
c) 求 \(P(Y > 3)\)。(1分)

解答:

a) 概率和为1:\(\frac{1}{k} + \frac{2}{k} + \frac{3}{k} + \frac{4}{k} + \frac{5}{k} = 1\)
\(\frac{15}{k} = 1\)
k = 15

b) 概率分布表:

y 1 2 3 4 5
P(Y = y) 1/15 2/15 3/15 4/15 5/15

c) \(P(Y > 3) = P(y=4) + P(y=5) = 4/15 + 5/15 = 9/15 = 3/5\)

中级练习 / Intermediate Exercises

练习 6

Shashi掷一个偏向六面骰子四次。\(P(6) = \frac{1}{4}\)。随机变量 \(T\) 表示掷出6的次数。

a) 构造概率分布表。(3分)
b) 求 \(P(T < 3)\)。(2分)

Shashi再次掷骰子,这次记录掷出6所需的次数。他最多掷5次。令随机变量 \(S\) 表示掷骰子的次数。

c) 构造概率分布表。(3分)
d) 求 \(P(S > 2)\)。(2分)

解答:

a) 二项分布,n=4,p=1/4
\(P(T=0) = \binom{4}{0}(1/4)^0(3/4)^4 = 1 \times 1 \times 81/256 = 81/256\)
\(P(T=1) = \binom{4}{1}(1/4)^1(3/4)^3 = 4 \times 1/4 \times 27/64 = 108/256 = 27/64\)
\(P(T=2) = \binom{4}{2}(1/4)^2(3/4)^2 = 6 \times 1/16 \times 9/16 = 54/256 = 27/128\)
\(P(T=3) = \binom{4}{3}(1/4)^3(3/4)^1 = 4 \times 1/64 \times 3/4 = 12/256 = 3/64\)
\(P(T=4) = \binom{4}{4}(1/4)^4(3/4)^0 = 1 \times 1/256 \times 1 = 1/256\)

b) \(P(T < 3) = P(T=0) + P(T=1) + P(T=2) = 81/256 + 108/256 + 54/256 = 243/256\)

c) 几何分布,最多5次
\(P(S=1) = 1/4\)
\(P(S=2) = (3/4)(1/4) = 3/16\)
\(P(S=3) = (3/4)^2(1/4) = 9/64\)
\(P(S=4) = (3/4)^3(1/4) = 27/256\)
\(P(S=5) = (3/4)^4(1/4) = 81/1024 = 81/1024\)

d) \(P(S > 2) = P(S=3) + P(S=4) + P(S=5) = 9/64 + 27/256 + 81/1024\)

练习 7

随机变量 \(X\) 的概率函数为 \(P(X = x) = \frac{x}{21}\),其中 \(x = 1,2,3,4,5,6\)。

a) 构造概率分布表。
b) 求 \(P(2 < X \leq 5)\)。
c) 求 \(\mathrm{E}(X)\)。
d) 求 \(\operatorname{Var}(X)\)。
e) 求 \(\operatorname{Var}(3 - 2X)\)。
f) 求 \(\mathrm{E}(X^3)\)。

解答:

a) 概率分布表:

x 1 2 3 4 5 6
P(X = x) 1/21 2/21 3/21 4/21 5/21 6/21

b) \(P(2 < X \leq 5) = P(x=3,4,5) = 3/21 + 4/21 + 5/21 = 12/21 = 4/7\)

c) \(\mathrm{E}(X) = \sum x \cdot \frac{x}{21} = \frac{1}{21}(1+4+9+16+25+36) = \frac{91}{21} = \frac{13}{3}\)

d) \(\mathrm{E}(X^2) = \sum x^2 \cdot \frac{x}{21} = \frac{1}{21}(1+8+27+64+125+216) = \frac{441}{21} = 21\)
\(\operatorname{Var}(X) = 21 - (\frac{13}{3})^2 = 21 - \frac{169}{9} = \frac{189}{9} - \frac{169}{9} = \frac{20}{9}\)

e) \(\operatorname{Var}(3 - 2X) = \operatorname{Var}(-2X) = (-2)^2 \operatorname{Var}(X) = 4 \times \frac{20}{9} = \frac{80}{9}\)

f) \(\mathrm{E}(X^3) = \sum x^3 \cdot \frac{x}{21} = \frac{1}{21}(1+16+81+256+625+1296) = \frac{2275}{21} = \frac{325}{3}\)

练习 8

离散随机变量 \(X\) 的概率分布如下表所示:

x -2 -1 0 1 2 3
P(X = x) 0.1 0.2 0.3 r 0.1 0.1

a) 求r。
b) 求 \(P(-1 \leq X < 2)\)。
c) 求 \(\mathrm{E}(2X + 3)\)。
d) 求 \(\operatorname{Var}(2X + 3)\)。

解答:

a) 概率和为1:0.1 + 0.2 + 0.3 + r + 0.1 + 0.1 = 1
0.8 + r = 1
r = 0.2

b) \(P(-1 \leq X < 2) = P(x=-1,0,1) = 0.2 + 0.3 + 0.2 = 0.7\)

c) \(\mathrm{E}(2X + 3) = 2\mathrm{E}(X) + 3\)
\(\mathrm{E}(X) = (-2)(0.1) + (-1)(0.2) + 0(0.3) + 1(0.2) + 2(0.1) + 3(0.1) = -0.2 - 0.2 + 0 + 0.2 + 0.2 + 0.3 = 0.3\)
\(\mathrm{E}(2X + 3) = 2(0.3) + 3 = 0.6 + 3 = 3.6\)

d) \(\operatorname{Var}(2X + 3) = 4 \operatorname{Var}(X)\)
\(\operatorname{Var}(X) = \mathrm{E}(X^2) - [\mathrm{E}(X)]^2\)
\(\mathrm{E}(X^2) = 4(0.1) + 1(0.2) + 0(0.3) + 1(0.2) + 4(0.1) + 9(0.1) = 0.4 + 0.2 + 0 + 0.2 + 0.4 + 0.9 = 2.1\)
\(\operatorname{Var}(X) = 2.1 - (0.3)^2 = 2.1 - 0.09 = 2.01\)
\(\operatorname{Var}(2X + 3) = 4 \times 2.01 = 8.04\)

高级练习 / Advanced Exercises

练习 9

离散随机变量 \(X\) 的概率分布如下表所示:

x 0 1 2
P(X = x) 1/5 b 1/5 + b

a) 求b的值。
b) 证明 \(\mathrm{E}(X) = 1.3\)。
c) 求 \(\operatorname{Var}(X)\) 的精确值。
d) 求 \(P(X \leq 1.5)\) 的精确值。

解答:

a) 概率和为1:1/5 + b + 1/5 + b = 1
2/5 + 2b = 1
2b = 3/5
b = 3/10

b) \(\mathrm{E}(X) = 0(1/5) + 1(3/10) + 2(1/5 + 3/10) = 0 + 0.3 + 2(0.2 + 0.3) = 0.3 + 2(0.5) = 0.3 + 1 = 1.3\)

c) \(\mathrm{E}(X^2) = 0(1/5) + 1(3/10) + 4(1/5 + 3/10) = 0 + 0.3 + 4(0.5) = 0.3 + 2 = 2.3\)
\(\operatorname{Var}(X) = 2.3 - (1.3)^2 = 2.3 - 1.69 = 0.61\)

d) \(P(X \leq 1.5) = P(x=0) + P(x=1) = 1/5 + 3/10 = 0.2 + 0.3 = 0.5\)

练习 10

离散随机变量 \(X\) 的概率函数为:

\[P(X = x) = \begin{cases} k(1 - x) & x = 0,1 \\ k(x - 1) & x = 2,3 \\ 0 & \text{其他} \end{cases}\]

其中k是常数。

a) 证明k = 1/4。(2分)
b) 求 \(\mathrm{E}(X)\) 并证明 \(\mathrm{E}(X^2) = 5.5\)。(4分)
c) 求 \(\operatorname{Var}(2X - 2)\)。(4分)

解答:

a) 概率和为1:k(1-0) + k(1-1) + k(2-1) + k(3-1) = k + 0 + k + 2k = 4k = 1
k = 1/4

b) 概率分布:P(x=0) = (1/4)(1-0) = 1/4
P(x=1) = (1/4)(1-1) = 0
P(x=2) = (1/4)(2-1) = 1/4
P(x=3) = (1/4)(3-1) = 2/4 = 1/2

实际分布:x=0: 1/4, x=1: 0, x=2: 1/4, x=3: 1/2

\(\mathrm{E}(X) = 0(1/4) + 1(0) + 2(1/4) + 3(1/2) = 0 + 0 + 0.5 + 1.5 = 2\)

\(\mathrm{E}(X^2) = 0(1/4) + 1(0) + 4(1/4) + 9(1/2) = 0 + 0 + 1 + 4.5 = 5.5\)

c) \(\operatorname{Var}(2X - 2) = \operatorname{Var}(2X) = 4 \operatorname{Var}(X)\)
\(\operatorname{Var}(X) = \mathrm{E}(X^2) - [\mathrm{E}(X)]^2 = 5.5 - 4 = 1.5\)
\(\operatorname{Var}(2X - 2) = 4 \times 1.5 = 6\)

练习 11

离散随机变量 \(X\) 的概率分布如下表所示:

x 0 1 2 3
P(X = x) 1/4 1/2 1/8 1/8

a) 求 \(P(1 < X \leq 2)\)。
b) 求 \(\mathrm{E}(X)\)。
c) 求 \(\mathrm{E}(3X - 1)\)。
d) 求 \(\operatorname{Var}(X)\)。
e) 求 \(\mathrm{E}(\log(X + 1))\)。

解答:

a) \(P(1 < X \leq 2) = P(x=2) = 1/8\)

b) \(\mathrm{E}(X) = 0(1/4) + 1(1/2) + 2(1/8) + 3(1/8) = 0 + 0.5 + 0.25 + 0.375 = 1.125\)

c) \(\mathrm{E}(3X - 1) = 3\mathrm{E}(X) - 1 = 3(1.125) - 1 = 3.375 - 1 = 2.375\)

d) \(\mathrm{E}(X^2) = 0(1/4) + 1(1/2) + 4(1/8) + 9(1/8) = 0 + 0.5 + 0.5 + 1.125 = 2.125\)
\(\operatorname{Var}(X) = 2.125 - (1.125)^2 = 2.125 - 1.265625 = 0.859375\)

e) \(\mathrm{E}(\log(X + 1)) = \log(1)(1/4) + \log(2)(1/2) + \log(3)(1/8) + \log(4)(1/8) = 0 + 0.5 \log 2 + 0.125 \log 3 + 0.125 \log 4\)

练习 12

离散随机变量 \(X\) 的概率分布如下表所示:

x 1 2 3 4
P(X = x) 0.4 0.2 0.1 0.3

a) 求 \(P(3 < X^2 < 10)\)。
b) 求 \(\mathrm{E}(X)\)。
c) 求 \(\operatorname{Var}(X)\)。
d) 求 \(\mathrm{E}\left(\frac{3 - X}{2}\right)\)。
e) 求 \(\mathrm{E}(\sqrt{X})\)。
f) 求 \(\mathrm{E}(2^{-x})\)。

解答:

a) \(X^2\)的可能值:1,4,9,16
\(3 < X^2 < 10\)对应\(X^2 = 4,9\)(x=2,3)
\(P = 0.2 + 0.1 = 0.3\)

b) \(\mathrm{E}(X) = 1(0.4) + 2(0.2) + 3(0.1) + 4(0.3) = 0.4 + 0.4 + 0.3 + 1.2 = 2.3\)

c) \(\mathrm{E}(X^2) = 1(0.4) + 4(0.2) + 9(0.1) + 16(0.3) = 0.4 + 0.8 + 0.9 + 4.8 = 6.9\)
\(\operatorname{Var}(X) = 6.9 - (2.3)^2 = 6.9 - 5.29 = 1.61\)

d) \(\mathrm{E}\left(\frac{3 - X}{2}\right) = \frac{3}{2} - \frac{1}{2}\mathrm{E}(X) = 1.5 - 0.5(2.3) = 1.5 - 1.15 = 0.35\)

e) \(\mathrm{E}(\sqrt{X}) = \sqrt{1}(0.4) + \sqrt{2}(0.2) + \sqrt{3}(0.1) + \sqrt{4}(0.3) = 1(0.4) + 1.414(0.2) + 1.732(0.1) + 2(0.3) = 0.4 + 0.2828 + 0.1732 + 0.6 = 1.456\)

f) \(\mathrm{E}(2^{-x}) = 2^{-1}(0.4) + 2^{-2}(0.2) + 2^{-3}(0.1) + 2^{-4}(0.3) = 0.5(0.4) + 0.25(0.2) + 0.125(0.1) + 0.0625(0.3) = 0.2 + 0.05 + 0.0125 + 0.01875 = 0.28125\)

挑战练习 / Challenge Exercises

练习 13

随机变量 \(X\) 的概率分布如下表,已知 \(\mathrm{E}(X) = 3.1\),写出涉及p和q的两个方程。求:

x 1 2 3 4 5
P(X = x) 0.1 p q 0.3 0.1

a) p和q的值。
b) \(\operatorname{Var}(X)\)。
c) \(\operatorname{Var}(2X - 3)\)。

解答:

概率和:0.1 + p + q + 0.3 + 0.1 = 1
0.5 + p + q = 1
p + q = 0.5

\(\mathrm{E}(X) = 1(0.1) + 2p + 3q + 4(0.3) + 5(0.1) = 0.1 + 2p + 3q + 1.2 + 0.5 = 1.8 + 2p + 3q = 3.1\)
2p + 3q = 3.1 - 1.8 = 1.3

联立:p + q = 0.5
2p + 3q = 1.3

从第一个:p = 0.5 - q
代入:2(0.5 - q) + 3q = 1.3
1 - 2q + 3q = 1.3
1 + q = 1.3
q = 0.3
p = 0.5 - 0.3 = 0.2

b) \(\mathrm{E}(X^2) = 1(0.1) + 4p + 9q + 16(0.3) + 25(0.1) = 0.1 + 0.8 + 2.7 + 4.8 + 2.5 = 10.9\)
\(\operatorname{Var}(X) = 10.9 - (3.1)^2 = 10.9 - 9.61 = 1.29\)

c) \(\operatorname{Var}(2X - 3) = 4 \operatorname{Var}(X) = 4 \times 1.29 = 5.16\)

练习 14

随机变量 \(X\) 的概率函数为:

\[P(X = x) = \begin{cases} kx & x = 1,2 \\ k(x - 2) & x = 3,4,5 \end{cases}\]

其中k是常数。

a) 求k的值。(2分)
b) 求 \(\mathrm{E}(X)\) 的精确值。(1分)
c) 证明 \(\operatorname{Var}(X) = 2.02\)(取3位有效数字)。(2分)
d) 求 \(\operatorname{Var}(3 - 2X)\)(取1位小数)。(1分)

解答:

a) 概率和:k(1+2) + k(1+2+3) = 3k + 6k = 9k = 1
k = 1/9

b) 概率分布:P(x=1) = (1/9)(1) = 1/9
P(x=2) = (1/9)(2) = 2/9
P(x=3) = (1/9)(1) = 1/9
P(x=4) = (1/9)(2) = 2/9
P(x=5) = (1/9)(3) = 3/9 = 1/3

\(\mathrm{E}(X) = 1(1/9) + 2(2/9) + 3(1/9) + 4(2/9) + 5(1/3) = 1/9 + 4/9 + 3/9 + 8/9 + 15/9 = 31/9\)

c) \(\mathrm{E}(X^2) = 1(1/9) + 4(2/9) + 9(1/9) + 16(2/9) + 25(1/3) = 1/9 + 8/9 + 9/9 + 32/9 + 75/9 = 125/9\)
\(\operatorname{Var}(X) = 125/9 - (31/9)^2 = 125/9 - 961/81 = (10125 - 961)/81 = 9164/81 ≈ 113.135\)

等等,计算有误。让我重新计算:

实际上应该是 \(\operatorname{Var}(X) = \frac{125}{9} - \left(\frac{31}{9}\right)^2 = \frac{125}{9} - \frac{961}{81} = \frac{1125}{81} - \frac{961}{81} = \frac{164}{81} ≈ 2.025\)

d) \(\operatorname{Var}(3 - 2X) = \operatorname{Var}(-2X) = 4 \operatorname{Var}(X) = 4 \times 164/81 = 656/81 ≈ 8.1\)

练习 15

离散随机变量 \(X\) 的概率分布如下表,已知 \(\mathrm{E}(Y) = 1.1\),其中 \(Y = 3X - 1\)。

x -1 0 1 2
P(X = x) 0.1 0.3 a b

a) 求a和b的值。(5分)
b) 使用a和b的值计算 \(\mathrm{E}(X^2)\) 和 \(\operatorname{Var}(X)\)。
c) 写出 \(\operatorname{Var}(Y)\) 的值。(1分)
d) 求 \(P(Y + 2 > X)\)。(2分)

解答:

a) 概率和:0.1 + 0.3 + a + b = 1
0.4 + a + b = 1
a + b = 0.6

\(\mathrm{E}(X) = -1(0.1) + 0(0.3) + 1(a) + 2(b) = -0.1 + 0 + a + 2b = a + 2b - 0.1\)

\(\mathrm{E}(Y) = 3\mathrm{E}(X) - 1 = 1.1\)
3(a + 2b - 0.1) - 1 = 1.1
3a + 6b - 0.3 - 1 = 1.1
3a + 6b - 1.3 = 1.1
3a + 6b = 2.4

联立:a + b = 0.6
3a + 6b = 2.4

从第一个:b = 0.6 - a
代入:3a + 6(0.6 - a) = 2.4
3a + 3.6 - 6a = 2.4
-3a + 3.6 = 2.4
-3a = 2.4 - 3.6 = -1.2
a = 0.4
b = 0.6 - 0.4 = 0.2

b) \(\mathrm{E}(X) = -1(0.1) + 0(0.3) + 1(0.4) + 2(0.2) = -0.1 + 0 + 0.4 + 0.4 = 0.7\)

\(\mathrm{E}(X^2) = 1(0.1) + 0(0.3) + 1(0.4) + 4(0.2) = 0.1 + 0 + 0.4 + 0.8 = 1.3\)

\(\operatorname{Var}(X) = 1.3 - (0.7)^2 = 1.3 - 0.49 = 0.81\)

c) \(\operatorname{Var}(Y) = \operatorname{Var}(3X - 1) = 9 \operatorname{Var}(X) = 9 \times 0.81 = 7.29\)

d) \(Y + 2 > X\)
\(3X - 1 + 2 > X\)
\(3X + 1 > X\)
\(2X > -1\)
\(X > -0.5\)

由于X只取整数,\(X > -0.5\)等同于\(X \geq 0\)
\(P(X \geq 0) = P(x=0) + P(x=1) + P(x=2) = 0.3 + 0.4 + 0.2 = 0.9\)

练习 16

离散随机变量的每个值被假设为等可能的。

a) 写出这个分布的名称。
b) 举一个这样的分布的例子。

上面定义的离散随机变量 \(X\) 可以取值0,1,2,3,4。

c) 求 \(\mathrm{E}(X)\)。
d) 求 \(\operatorname{Var}(X)\)。

解答:

a) 离散均匀分布(Discrete uniform distribution)

b) 公平骰子的点数(1-6各概率1/6)

c) n=5,\(\mathrm{E}(X) = \frac{5 + 1}{2} = 3\)

d) \(\operatorname{Var}(X) = \frac{(5 + 1)(5 - 1)}{12} = \frac{30}{12} = 2.5\)

章节复习总结 / Chapter Review Summary

复习要点 / Review Key Points:

  • 熟练掌握概率分布、期望值、方差和累积分布函数的计算
  • 理解随机变量函数变换的统计量计算和反推问题
  • 熟悉离散均匀分布的标准公式和应用
  • 能够处理复杂的概率和统计计算
  • 掌握实际问题的概率建模方法

完成这些章节复习练习将帮助您全面掌握离散随机变量的核心概念和计算方法。如果在练习过程中遇到困难,建议回顾各小节的教材内容和示例。

Completing these chapter review exercises will help you comprehensively master the core concepts and calculation methods for discrete random variables. If you encounter difficulties during practice, it is recommended to review the textbook content and examples from each section.